Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Acta cir. bras ; 35(12): e351206, 2020. graf
Article in English | LILACS | ID: biblio-1152686

ABSTRACT

Abstract Purpose: To investigate the protective effect of L-carnitine on myocardial injury in rats with heatstroke. Methods: orty-eight rats were randomly divided into control, heatstroke and 25, 50 and 100 mg/kg L-carnitine groups. The last three groups were treated with 25, 50 and 100 mg/kg L-carnitine, respectively, for seven successive days. Then, except for the control group, the other four groups were transferred into the environment with ambient temperature of (39.5 ± 0.4 °C) and relative humidity of (13.5 ± 2.1%) for 2 h. The core temperature (Tc), mean arterial pressure (MAP), heart rate (HR) and serum and myocardial indexes were detected. Results: Compared with the heatstroke group, in the 100 mg/kg L-carnitine group, the Tc was significantly decreased, the MAP and HR were significantly increased, the serum creatine kinase, lactate dehydrogenase, alkaline phosphatase, aspartate aminotransferase, tumor necrosis factor α and interleukin 1β levels were significantly decreased, the myocardial superoxide dismutase and glutathione peroxidase levels were significantly increased, the myocardial malondialdehyde level was significantly decreased and the cardiomyocyte apoptosis index and myocardial caspase-3 protein expression level were remarkably decreased (p < 0.05). Conclusions: The L-carnitine pretreatment can alleviate the myocardial injury in heatstroke rats through reducing the inflammatory response, oxidative stress and cardiomyocyte apoptosis.


Subject(s)
Animals , Carnitine/pharmacology , Heat Stroke/metabolism , Heat Stroke/drug therapy , Rats , Oxidative Stress , Malondialdehyde/metabolism , Myocardium/metabolism
2.
Braz. j. med. biol. res ; 46(6): 507-512, 02/jul. 2013. graf
Article in English | LILACS | ID: lil-679207

ABSTRACT

Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries.


Subject(s)
Animals , Rats , Anesthetics, Intravenous/pharmacology , Epithelial Cells/drug effects , Heat Stroke/complications , Propofol/pharmacology , Anti-Inflammatory Agents/therapeutic use , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Formazans , Heat Stroke/drug therapy , Heat-Shock Response/drug effects , Intestines/cytology , Intestines/microbiology , Intestines/pathology , Lipopolysaccharides/toxicity , Necrosis , Tetrazolium Salts
SELECTION OF CITATIONS
SEARCH DETAIL